The TORCH PMT; a close packing, multi-anode, long life MCP-PMT for Cherenkov applications

J.S. Milnes¹, T. M. Conneely¹, J. S. Lapington², P. Kapetanopoulos¹, C. Slatter¹, and J. Howorth¹

1. Photek Ltd, 26 Castleham Road, St Leonards-on-sea, TN38 9NS, UK

2. Space Research Centre, University of Leicester, University Road, Leicester, LE1 7RH, UK

Three main aims:

2. High granularity multi-anode 1. Lifetime

3. Square

 In November 2012 Photek started the 3-year development of the TORCH (Timing Of internally Reflected CHerenkov photons) PMT

 A collaboration with CERN and the Universities of Oxford and Bristol for the LHCb upgrade

• Technical aims:

- A lifetime of 5 C/cm² of accumulated anode charge or better
- A multi-anode readout of 8 x 128 pixels

1. Lifetime

- Standard MCP detectors suffer from sensitivity loss after prolonged exposure:
 - An MCP has a very large surface area
 - Prolonged electron bombardment of this surface releases material that is ionised
 - These ions are drawn back to the photocathode and reduce sensitivity
- Previous solutions have involved barrier films to prevent the ions reaching the photocathode
 - Limited success
 - Lowers MCP efficiency and overall sensitivity
- Recent technology of ALD (Atomic Layer Deposition) coating on MCP has significantly reduced out-gassing
- Close packing on two apposing sides with a fill factor of 88% or better
- 53 mm working width within a 60 mm envelope

2. High granularity multi-anode

- Photek have recently produced a 32 × 32 multi-anode PMT in a 40 mm diameter circular detector envelope
- This detector is currently under assessment
- The pads are 0.75×0.75 mm square on a 0.88 mm pitch

- This anode design is ~ 50% of the target granularity
- The design requires a PCB readout through an Anisotropic Conductive Film (ACF) contact:

• Current on-going life test with double MCP PMTs is confirming previous result (Conneely et al, Nucl. Instr. Meth. Phys. Res. A 732 (2013) 388–391) of no cathode degradation after significant anode charge integration:

• We have also explored the previously observed 30% MCP gain drop by modifying the MCP pre-conditioning ("scrubbing") with these two samples:

- Due to the high number of channels and the timing accuracy required we plan to use a combination of:
 - NINO ASIC
- High Performance Time-to-Digital Convertor (HPTDC) • NINO:
 - 32 channel differential amplifier /discriminator developed at CERN
 - 10 ps RMS jitter on the leading edge using time-over-threshold technique
 - >>10 MHz maximum rate
- HPTDC:
 - A programmable TDC developed for ALICE time-of-flight RPCs at the LHC

• The ALD coating also produces significantly more gain for the same applied voltage, and preliminary results indicate a noticeable improvement in the collection efficiency of the MCP input

0.20

0.15

0.10

0.05

2.0

- Using a method of charge sharing between pads, we can reduce the channel count and the required granularity of the multi-anode structure
- The plot below shows the simulated position resolution of a parallel readout, charge sharing detector (using the NINO and HPTDC as readout electronics) in the fine direction of the required 8 × 128 pixel layout
- The position resolution strongly depends on the NINO threshold and

3. Square

- To achieve the close packing requirement the detector has to be square or rectangular
- Traditional method of sealing anode welding is unusable due to close packing requirements
- We are experimenting with
 - Indium seal

- Two modes of operation:
 - 100 ps LSB resolution with 32 channels
 - 24.4 ps LSB resolution with 8 channels
- Default maximum rate is 2.5 MHz per channel, can be increased beyond 10 MHz using higher logic clock

PHOTEK

ENVISAGE THE FUTURE

ONIN 45

0.5

NINO

1.0 Gain (1×10^6 electrons) 1.5

- Fritting
- Currently producing leak-tight square test cells

